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Exploring Dependency Related Breakages in
the NPM Ecosystem

Shaquille Pearson & Mahmoud Alfadel & Shane McIntosh

Abstract—NPM stands as one of the world’s most extensive software registries and is the home to an immense array of projects
spanning both professional and amateur domains. Within this vast ecosystem lie millions of projects interlinked by dependencies,
showcasing the dynamic nature of modern software development. The sheer magnitude of interconnected projects underscores the
critical significance of effective dependency management. As developers leverage and contribute to this expansive repository, ensuring
the reliability of software becomes a paramount challenge. Effective management of dependencies becomes a crucial element in
preserving the integrity, functionality, and overall reliability of software projects embedded within NPM’s ecosystem.
Our research delves into dependency-related build failures within the NPM ecosystem by analyzing 24 JavaScript projects. Rigorous
project selection criteria, encompassing factors like popularity, activity, autonomy, and dependency installation steps, ensured a
representative dataset. Employing Git and act, we traced commits affecting package.json files and locally reproduced builds for
detailed analysis. Through manual classification of build outcomes, specifically targeting dependency-related failures, our study
addresses three key research questions. Firstly, we emphasize the pivotal role of essential build steps, identifying that approximately
11.7% of project failures stem from dependency-related issues, highlighting the pressing need for improved dependency management
practices. Secondly, we underscore the impact of automation in swiftly resolving simpler dependency-related issues, with the quickest
fixes taking only 2 minutes. Conversely, longer fix times, extending up to 5 months, emphasize the intricate and time-intensive nature
of manual interventions in software development. Lastly, our findings reveal that dependency-related failures, constituting 60% of total
issues, are systemic challenges affecting a diverse array of software projects. Among these challenges, peer dependency conflicts
emerge as the most prevalent issue, underscoring their critical role in build failures.

Index Terms—NPM, Yarn, Build
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1 INTRODUCTION

MODERN software systems are built using existing
third-party packages, modules, components, or li-

braries, collectively referred to as dependencies [20] [18].
These dependencies play a fundamental role in the develop-
ment process, providing pre-built and reusable functionali-
ties that contribute to the efficiency, scalability, and overall
robustness of software applications. They are usually linked
to projects via symbolic declarations in modern package
managers such as npm or yarn for javascript 1 2. This allows
them to be downloaded from remote repositories at build
time. By using version constraints developers can control
which versions are compatible with the parent project which
can provide significant flexibility in the dependency man-
agement process [1].

Maintaining compatible package versions takes up a
significant amount of time and developers don’t always
adhere to NPM’s version management system ”SemVer”
[10] [14], which introduces technical lag [21]. The dynamic
nature of dependencies introduces a continuous evolution
process, further exacerbating the issue of technical lag.
Consequently, the delay in updating to newer versions may
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lead to unexpected behaviors within software systems, and
in more severe cases, it can even result in system breakages.

While prior research has extensively explored build
failures linked to software dependencies, focusing on lan-
guages like Java, C++, and Python, our study uniquely
hones in on the NPM ecosystem. Seo et al [16], Horton
and Parnin [9], and Mukherjee et al [13] showcased the
widespread impact of dependencies on builds. In the do-
main of dependency studies, Decan et al [6] and Zerouali et
al [21] unveiled insights into vulnerability consequences and
technical lag, respectively. Meanwhile, Cogo et al [4] em-
phasized reactive downgrades. However, our contribution
surpasses existing work by providing a nuanced analysis
specific to NPM, providing a taxonomy of breakages and
breakage time severity while also grouping them according
to respective NPM phases.

In this study, we present a comprehensive analysis of
build failures related to NPM package management. Our
focus on the NPM ecosystem allows us to offer targeted
insights into dependency challenges, addressing the unique
intricacies of dependency-related breakages. More specifi-
cally, we set out to address the following research questions:
(RQ1) How prevalent are dependency-related breakages?

Motivation: The outcomes of our investigation hold
substantial value for developers, project managers,
and teams involved in NPM projects. By providing a
thorough comprehension of the challenges linked to
dependencies, our study empowers stakeholders to
implement proactive strategies. This, in turn, facil-
itates the improvement of project reliability, reduc-
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tion of build failures, and the cultivation of a more
streamlined and resilient development process.
Results:
The analysis of 24 NPM projects revealed that the
inclusion of essential build steps, notably installa-
tion and script/build, played a pivotal role in the
assessment of dependency-related issues. A notable
11.7% of project failures were linked to challenges in
managing dependencies. The results emphasize the
need for enhanced dependency management prac-
tices within the NPM ecosystem to improve overall
project reliability and minimize failure rates.

(RQ2) How long do these breakages persist?
Motivation: For developers, acknowledging the in-
fluence of automation emphasizes the importance of
automating routine tasks in dependency resolution.
This understanding facilitates process streamlining,
reducing disruptions, and improving overall project
efficiency. Researchers, on the other hand, extract
valuable insights into prevalent issues, laying the
foundation for crafting automated analysis tools.
These tools, guided by recognized patterns, can offer
early detection and resolution suggestions, making
substantial contributions to project stability and ef-
fectiveness across its lifespan
Results:
We analyzed the time required to address all 27
unique dependency-related failures. This examina-
tion reveals an average fix time of 12 days. Re-
markably, the swiftest resolution occurred within 2
minutes, highlighting the efficiency of automated
responses. Conversely, the lengthiest fix time ex-
tended to 5 months, emphasizing the intricate and
time-consuming nature of manual interventions in
software development. The significant variability
in fix times can be attributed to the diverse ap-
proaches adopted, with automated systems demon-
strating rapid responses, especially in cases involv-
ing straightforward version changes. To validate our
findings, we employed cross-reference validation,
assigning the same manual analysis task to another
author, thus reinforcing the reliability and consis-
tency of our results.

(RQ3) What are the breakage categories?
Motivation: By categorizing distinct types of
dependency-related failures and identifying their
prevalence, developers gain actionable insights to
enhance dependency management strategies. Project
managers can benefit from a systemic understand-
ing of these issues, enabling them to allocate re-
sources effectively and implement preventive mea-
sures. For researchers, these findings contribute to
the broader understanding of challenges in NPM
ecosystems, guiding the development of targeted
tools and methodologies for improved software re-
liability and resilience.
Results:
The analysis identified seven distinct types of
dependency-related failures impacting thirteen
projects. Peer dependency conflicts, constituting 60%
of failures, underscore the need for effective reso-

lution strategies. Lock file version mismatches and
issues like incompatible node versions follow closely,
posing risks during project builds. The exploration
of failure stages in the NPM installation process high-
lights their critical impact, especially during the NPM
install dependency resolution phase.

In summary, our study unravels crucial insights for
developers, project managers, and researchers alike. The
spotlight on essential build steps reveals an 11.7% incidence
of project failures linked to dependency-related issues, de-
manding immediate attention to fortify dependency man-
agement practices within the NPM ecosystem. Delving into
fix times exposes the intricate dance between automation
and manual intervention, with rapid 2-minute resolutions
contrasting against the complex 5-month endeavors. Be-
yond these temporal dynamics, our analysis sheds light
on the systemic nature of dependency-related challenges,
particularly the dominance of peer dependency conflicts
at 60%. These findings not only offer practical strategies
for immediate implementation but also fuel the broader
discourse on fortifying software reliability and resilience in
the ever-evolving NPM terrain.
Paper organization. The remainder of the paper is orga-
nized as follows. Section ?? provides a background for the
work. Section ?? outlines our motivation. Section 2 provides
an overview of the design of our study, while Section 3
presents the results. Section 4 discusses the broader impli-
cations of our observations. Section 5 presents the threats to
the validity of the study. Section 6 situates this work with
respect to the literature, while Section 7 draws conclusions
and proposes directions for future work.

2 STUDY DESIGN

Our study aims to provide insights into the prevalence,
duration, and patterns of dependency-related build break-
ages in software projects, To provide insights that enable
more effective strategies for managing and mitigating these
challenges. We focus on NPM packages (dependencies) that
are available from the NPM ecosystem, which is the largest
software package ecosystem in the development landscape
[19]. To date, NPM hosts more than four million packages
and has the highest rate of growth in terms of packages
among all known programming languages.3 NPM has a
registry where packages are published and maintained [17].

In this section, we present our approach to project se-
lection and data filtration (Section 2.1). Then, we provide
an overview of our approach to running and analyzing the
builds of the selected projects (Section 2.2 & Section 2.3).

2.1 Collecting Project Dataset

Since we focus on dependency-related build breakages in
NPM packages, we opt to select JavaScript projects that
adopt NPM to manage their dependencies. Such projects
must specify their dependencies in a package.json file,
which lists the packages upon which the project depends,
as well as their versioning constraints.

3. https://libraries.io/NPM



3

Libraries.io

Data Filteration (DF)

DF1 DF2

Select Projects with
>= 1000 Downloads

Select Projects with
>= 700 Commits
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Projects
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Projects

Metadata Repo Specs

1,277,528
Projects

Collect Github Metadata Collect projects with .yml files

DF3 DF4

Select projects with
github .yml files

Select projects with
with dependency
installation steps

390
Projects

29
Projects

Fig. 1: Overview of the project selection process.

We begin our process with Libraries.io [12], an open-
source web service that hosts an extensive repository of soft-
ware projects spanning various package managers. Upon
filtration of projects that adopt NPM, we find 1.2 million
projects that adopt NPM. Since many of these projects
are not yet mature or of sufficient complexity to warrant
analysis, we apply several criteria for selecting a set of
projects that are representative of our study analysis. Figure
1 provides an overview our project selection process. We
describe each data filtration (DF) step below:

• Select popular projects (DF1). The download count
serves as a key indicator of a repository’s value
within the developer community because it reflects
the actual usage of a package by developers [11]. We
select a threshold of 1,000 downloads builds because
it is closer to a “knee” in the curve (see Figure 2).
Selecting this threshold further reduces the number
of projects in the dataset to 56,187 projects.

• Filter large and active projects (DF2) Projects with
a substantial commit history are typically well-
established, stable, and reliable [11]. They often boast
a vibrant community of contributors and users, mak-
ing them a trusted choice within the developer com-
munity. Hence, we choose 700 commits as a thresh-
old for identifying mature projects. Figure 3 shows
the threshold plot with 3,434 projects remaining at
the knee.

• Ensure local build reproducibility (DF3) We pri-
oritize projects with Continuous Integration (CI)
”build” jobs that operate autonomously, without re-
lying on external dependencies or CI/CD credentials
like GitHub secret tokens, see line 24 in Listing
1. By ensuring that the CI process does not need
external credentials, we promote robust and reliable
project builds and it helps to maintain the local repro-
ducibility of builds using act [22]. Act allows us to
run GitHub Actions workflows locally by simulating
GitHub’s execution environment, enabling us to run
builds without committing or pushing changes.

• Validating dependency usage (DF4) We focus
specifically on projects that incorporate dependency
installation steps within their Continuous Integra-
tion (CI) workflows. This focus aligns with our
primary objective, which is to study and analyze
dependency-related build breakages in real-world
software projects. Our approach involves examining

each CI file individually to identify specific com-
mands within the ”build” job, such as npm i, npm
ci, or npm update. See line 26 in Listing 1
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Fig. 2: Threshold analysis for the number of downloads.
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Fig. 3: Threshold analysis for number of commits

2.2 Build replay
After collecting the project dataset, we create local builds
for each project. Our process of build replay comprises two
main steps. Below, we explain each step.

Collect Dependency Commits. To investigate dependency-
related breakages, we gather commits directly affecting the
package.json file in our selected projects. Focusing on
package.json commits is essential as these commits are
likely to introduce problems associated with dependencies,
since Node.js applications define their dependencies in
package. json along with their version constraints [2].
We use Git commands to trace the version control system
history of each project.
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1 jobs:
2 build:
3 runs-on: ubuntu-latest
4 strategy:
5 fail-fast: true
6

7 steps:
8 - uses: actions/checkout@v2
9 - name: Cache node modules

10 uses: actions/cache@v2
11 env:
12 cache-name: cache-node-modules
13 with:
14 path: ˜/.npm
15 key: ${{ runner.os }}-build-${{ env.

cache-name }}-${{ hashFiles(’**/package-
lock.json’) }}

16 restore-keys: |
17 ${{ runner.os }}-build-${{ env.

cache-name }}-
18 ${{ runner.os }}-build-
19 ${{ runner.os }}-
20 - uses: actions/setup-node@v2
21 with:
22 node-version: ’16’
23 cache: ’npm’
24 github-token: ${{ secrets.

GITHUB_TOKEN }}
25

26 - name: Install dependencies
27 run: npm i
28

29 - name: Run Build
30 run: npm run build:all

Listing 1: Example Build File

Build Reproduction. To replay builds, we use act, a tool
for locally reproducing GitHub actions4. The tool interprets
and executes actions defined in the project .yml files,
generating build scripts and integrating with Docker to
ensure emulation of GitHub action workflows locally [22].
Using the commits that impact the package.json file and
act, we create isolated environments for each commit. Act
reads GitHub Actions workflow files, generates tailored
workflows for each commit, and executes them in separate
Docker containers. Within these environments, we execute
the designated “build” job using act, capture the output,
and save it in individual text files. We then ensure a clean
slate is prepared for the next build by resetting the environ-
ment after each commit with git reset, ensuring that our
builds are not affected by noise.

2.3 Classifying Builds
In this section, we detail our approach to conducting an
in-depth examination of the build logs produced for every
project. Our objective is to delve into the prevalence and
patterns of build failures attributed to dependencies. We
analyze each log, aiming to gain insights into the reasons
behind both failed and successful builds. By manually re-
viewing the logs, we aim to uncover trends that may not be
apparent through automated processes alone.

4. https://github.com/nektos/act

(Manual Analysis). We consider the following to determine
if a build is broken and the primary cause for the breakage:

• Job. This encompasses the execution of a series of
predefined tasks or actions within a specified envi-
ronment. These tasks may include building, testing,
deploying, or performing other operations related to
the project’s development lifecycle.

• Step. This encompasses the execution of various
commands essential for the build, test, and deploy-
ment processes.

• Fail. If any step within the job fails, we label the
entire build as ”failed.”

• Pass. If all steps with the build job are successful then
the build is labeled ”passed”.

3 STUDY RESULTS

In this section, we provide a presentation of the outcomes
derived from our study, specifically addressing the research
questions at hand. We outline our approach, detailing the
steps we undertook to investigate it. Subsequently, we share
the observed results and findings that have emerged as a
result of our research efforts. This approach allows for a
clear and organized presentation of our findings, providing
valuable insights into each research question’s resolution.

(RQ1) How prevalent are dependency-related break-
ages?

RQ1: Approach. Our analysis involved the examination of
a total of 24 individual projects. We followed the manual
analysis methodology detailed in the previous section, ex-
ecuting builds for each commit in chronological order. We
continued this process until the corresponding .yml file was
no longer available or until the job configurations were no
longer aligned with our predefined specifications.
RQ1: Results.

Figure 4 outlines our project selection, commits that
touched package.json, and the number of builds we were
able to reproduce. We observed a disparity between the
number of builds we successfully reproduced and the to-
tal count of commits can be attributed to our specific
project selection criteria. We deliberately focused on mature
projects, which naturally accumulate a substantial number
of commits over time. However, Continuous Integration and
Continuous Deployment (Ci/CD) configurations may not
be universally implemented right from a project’s inception.
In practice, Ci/CD pipelines and configurations tend to
be introduced at later stages in a project’s development,
especially as the project grows and increases in complexity
to avoid breakages and allow faster deployment, etc. [15].
Consequently, some of the initial commits lacked .yml con-
figurations, resulting in a lower count of builds that we were
able to reproduce. Furthermore, if the build process config-
uration didn’t include typical steps such as installation and
script/build [8], steps we opted to skip it.

Table 1 shows the percentage of failing and passing
builds for the entire dataset. We found that 11.7% of failures
are due to dependency-related issues and another 53.5%
failed for other reasons making for a total of 65.2% failures.
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Project Commits Reproduced
Builds

akita
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bowser
browser-sync
casparcg-connection
color-names
cytoscape.js
d3
express-openapi-validator
history
hooks
javascript-sdk
jscpd
maker.js
msgpack-javascript
ngl
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OverlayScrollbars
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275
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113
271
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32
1
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6
28
2
3
65
11
49
1
18
9
2

301
29
290
3
14
7
20

Total 6823 982

Fig. 4: Selected Projects

This underlines the impact that poorly managed depen-
dencies can have on a project. This concept holds true in
two cases: first, when dealing with breaking updates to
dependencies, and second, when persisting with depen-
dencies known to have defects [3] [7]. In the context of
breaking updates, dependencies often evolve, introducing
new features, bug fixes, and sometimes breaking changes.
Failing to monitor these updates can lead to compatibility
issues, unexpected behavior, or even system failures. On
the other hand, continuing to employ dependencies with
known defects or vulnerabilities can jeopardize the stability
and security of a project. Ignoring these issues can result
in system vulnerabilities, performance degradation, or even
data breaches.

The presence of essential build steps, such as installation
and script/build, was a key factor in determining if a build
was included in the analysis. 11.7% of project failures are
attributed to dependency-related issues which highlight the
need for better dependency management practices.

(RQ2) How long do these breakages persist?
RQ2: Approach. We initiated our analysis with the
dependency-related breakages which accounted for 11.7%
of total failures. We then implemented additional filtering
to pinpoint a selection of 27 distinct dependency-related

Category # %

Passing Builds 456 46.5

Failing Builds 526 53.5

Dependency Related Build Failures 115 11.7

TABLE 1: Reproduced Builds

breakages that reoccurred over time to account for the total
115 dependency failures. Concentrating on these specific,
repetitive failures, we aimed to gain valuable insights into
the challenges associated with the project’s reliance on these
dependencies. Our aim was to analyze the breakage time for
each failure, to calculate this, we took the timestamp of the
initial breaking commit and the corresponding local build
time (using act) [22]. Subsequently, we moved forward
in time, taking into account the duration until the fixing
commit’s build was completed. This time span encapsulated
the period during which a failure was detected and subse-
quently fixed. By calculating these time differences, we were
able to quantify the breakage time for each failure.
RQ2: Results.

Figure 5, displays an analysis of the time to resolve
build breakages originating from all 27 unique dependency-
related failures. This chart illustrates the duration from the
introduction of the breaking commit to the point where the
build is successfully fixed. The average fix time for these
incidents is 12 days, providing an overview of the typical
timeframe for resolving these issues. Notably, the most rapid
fix occurred in a mere 2 minutes, showcasing a highly
efficient response, while the longest took 5 months. The sub-
stantial contrast between the shortest and longest fix times
can be attributed to the distinct approaches used in address-
ing issues. In cases with the quickest fixes, automated sys-
tems or ”bots” were employed. These systems implemented
some breaking changes and swiftly rectified problems in
the following commit. In contrast, longer fix times were
typically tied to human intervention and involved more
complex issues, such as compatibility problems, or codebase
conflicts within the dependencies. Automated fixes, on the
other hand, usually revolved around straightforward ver-
sion changes in the project’s package.json file.

(Cross-Reference Validation) - To validate the findings
presented by the first author, we assign the same manual
analysis task to another author. By having a second author
independently perform the same manual analysis, we aim
to confirm the consistency and accuracy of the findings,
strengthening the validity of our analysis.

The wide range of fix times for dependency-related failures
highlights the impact of automation in quickly addressing
simpler issues, with the fastest fixes taking just 2 minutes.
On the other hand, longer fix times, up to 5 months,
emphasize the complexities and time required for manual
interventions in software development.

(RQ3) What are the breakage categories?
RQ3: Approach. We conducted a manual analysis of the
generated builds and compared the results of both authors.
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ID Reason Description %

R1 Frozen Lock File Error Package-lock.json is frozen, meaning it’s not being updated correctly to reflect changes 5.22%

R2 Lock File Version Mismatch Versions of dependencies in package.json don’t match those in package-lock.json 13.04%

R3 Peer Dependency Conflict Modules in package.json require incompatible versions of third-party packages 60.86%

R4 Incomplete Installation Error Errors that occur during the downloading/installation of dependencies 2.61%

R5 Missing/Undefined Dependencies Dependencies specified in the package.json are not installed/defined 7.83%

R6 Incompatible Node Version Node.js version specified in the package.json file does not match the version installed 7.83%

R7 Enoent Error A specified path file or directory does not exist in the file system 2.61%

ID Install Phase Description

R1-R3 Resolving Dependencies NPM parses the package.json file and constructs a dependency tree of all dependencies

R4-R5 Fetching Dependencies NPM downloads and caches all dependencies on the local machine

R6 Installing Dependencies NPM extracts the downloaded packages and installs them in the project directory

R7 Custom Install scripts NPM runs any custom install scripts defined in package.json

TABLE 2: Dependency Related Breakage Errors
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Average Fix Time: 12.19days

Fig. 5: Breakage Persistence

To quantify the agreement between the manual analysis
and of both authors, we used the Cohen Kappa coefficient [5]
to calculate the inter-rater agreement score which assesses
how much agreement exists between two different raters or
methods of categorization.

RQ3: Results. Table 2 presents a summary of the 7 distinct
types of dependency-related failures that were identified
during the analysis of builds. These failures had a significant
impact on a total of thirteen different projects, indicating
that they were not isolated incidents but rather systemic
issues that affected multiple software projects. Notably, peer
dependency conflicts emerged as the most prevalent issue,
contributing a significant 60% of the total dependency-
related failures observed. The high level of peer dependency
conflicts indicates their widespread occurrence and the criti-
cal need for effective resolution strategies. Following closely
was lock file version mismatches, which represented the
second most common type of failure. These mismatches can
lead to discrepancies in expected and actual dependencies,
causing unexpected issues during project builds. In third
place were incompatible node versions and instances of
missing or undefined dependencies. These inconsistencies

can lead to runtime issues and disrupt the development
workflow. On the other hand, the presence of missing or
undefined dependencies can introduce complexities and
errors in the build process of a project

Additionally, we identified the stages within the NPM
installation process where the failures were encountered. It’s
important to note that the installation process consists of
multiple phases, but we have exclusively highlighted those
phases 5 6 7 that are relevant to our findings.

Dependency-related failures are not isolated incidents but
systemic issues that impact a wide range of software projects.
Peer dependency conflicts are the most prevalent, constitut-
ing 60% of the total dependency-related failures, and most
failures occur during the dependency resolution phase of
npm install.

4 PRACTICAL IMPLICATIONS

In this section, we outline a few ”lessons learnt” that could
have some practical significance for developers and re-
searchers.
1. Developers:

• Observation 1, a wide range of fix times
for dependency-related failures, from minutes
to months. Automated systems, or ”bots”,
demonstrated quick resolutions by implement-
ing straightforward version changes. Developers
should aim to automate repetitive tasks in the
dependency resolution process, to minimize dis-
ruptions.

• Observation 2, peer dependency conflicts are the
most problematic dependency-related failure. De-
velopers should prioritize maintaining consistent
versioning policies. Clearly defining and enforcing

5. https://docs.npmjs.com/cli/v6/commands/npm-
install#synopsis

6. https://docs.npmjs.com/cli/v6/using-npm/scripts#npm-install
7. https://docs.npmjs.com/cli/v6/using-npm/scripts#life-cycle-

scripts
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version constraints for dependencies can mitigate
the risk of conflicts arising from incompatible ver-
sions. Additionally regularly reviewing and updat-
ing dependencies to versions that are compatible
with each other can prevent potential conflicts.

2. Researchers:

• Observation 3, the identified patterns of
dependency-related failures in this study offer
valuable insights into the challenges faced by
software projects. These findings can be leveraged
to guide the development of automated analysis
tools that specifically target the most prevalent
issues. Tools that provide early detection and
resolution recommendations for these common
problems can significantly contribute to the
efficiency and stability of a project’s lifespan.

5 THREATS TO VALIDITY

In this section, we discuss various threats that could impact
the validity of the research outcomes. By examining and
addressing these potential limitations, we aim to enhance
the credibility of our study. It is important to recognize
that despite rigorous research methodologies, certain factors
may introduce biases or constraints that could influence
the applicability of the results. Identifying and openly
discussing these threats provides transparency and helps
readers to better understand the scope and limitations of
the study.

5.1 Construct Validity
We focus on measuring dependency-related failures by ex-
amining commits that specifically touch the package.json
file. However, it’s essential to acknowledge that dependency
issues can arise from a variety of changes beyond alterations
to the package.json. Variations in configuration files, ad-
justments to the development environment, codebase refac-
toring, modifications to scripts and updates to plugins or
extensions can all contribute to compatibility challenges.

However despite these broader potential contributors
changes such as version updates, addition, or removal of
dependencies directly influence the project’s dependencies
and, consequently, its build outcomes. This underscores
the importance of honing in on package.json changes
as the relevant metric for understanding the impact of
dependency-related failures.

5.2 Internal Validity
A significant threat to the internal validity of our study
stemmed from the inherent challenge of accessing CI/CD
build data due to privacy and confidentiality constraints.
The absence of direct access to these builds could manifest
as potential inaccuracies in our analysis, as we might be
unable to replicate the exact conditions of the build envi-
ronments.

To tackle this threat, we employed the act tool, specif-
ically designed for locally reproducing GitHub Actions.
By utilizing yml files and Docker containers, we aimed
to emulate the genuine build environments as closely as

possible. This use of act served as a practical solution to the
challenges associated with restricted access to CI/CD build
data, ensuring that our locally reproduced builds main-
tained a high degree of fidelity to the original conditions
and configurations.

5.3 External Validity

While our study centers on the Node Package Manager
(NPM), it’s crucial to recognize that narrowing the focus
to a specific package manager might raise concerns about
the generalizability of our findings to other ecosystems.
However, this decision is mitigated by the fact that NPM
stands as the largest software repository currently available,
exerting a significant influence, particularly within the web
development community.

The techniques and insights derived from our examina-
tion of NPM’s practices and challenges are likely to have
broader applicability across diverse software ecosystems.
The web development community’s extensive reliance on
NPM, combined with its widespread adoption, positions
it as a representative and influential case study. Therefore,
while our study is rooted in the context of NPM, the im-
plications and strategies identified are transferrable to other
package management scenarios, enhancing the external va-
lidity of our findings.

6 RELATED WORK

In this section, we explore the body of literature surround-
ing dependencies, their management, and the challenges
they pose in real-world software projects. By examining the
contributions of other scholars, we aim to contextualize our
study within the broader landscape of software engineer-
ing. From dependency resolutions to the consequences of
evolving software ecosystems, our exploration of related
literature provides a foundation for our research. This in-
volves recognizing existing knowledge but also pinpointing
specific areas where our study contributes valuable perspec-
tives for understanding and mitigating dependency-related
breakages.

Build Failures In their investigation of Java and C++
build failures, Seo et al [16] uncovered that close to 50%
of all build errors are attributed to software dependencies.
Similarly, when assessing Python gists on GitHub, Horton,
and Parnin [9] found that 52.4% of the gists failed to execute,
primarily due to dependency errors. Mukherjee et al [13]
analyzed 2,106 BugSwarm builds and found that 67.2%
had dependency errors. As software dependencies signifi-
cantly impact development workflows, the NPM ecosystem
presents it’s own unique challenges. Our study aims to
provide targeted insights specific to NPM package manage-
ment, optimizing installations, streamlining development,
and enhancing overall reliability.

Dependency Studies Decan et al [6] explored the con-
sequences of security vulnerabilities and observed that a
majority of these vulnerabilities were of medium or high
severity. The study further revealed that the fixes for vul-
nerabilities typically took a long time regardless of their
severity but low-severity vulnerabilities took longer to be
discovered. A notable finding was that over 50% of the
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dependent packages were impacted by vulnerabilities origi-
nating from upstream sources. Zerouali et al [21] found that
technical lag is introduced through the use of package.
json constraints, specifically the caret symbol which pre-
vents backward incompatible changes, which would explain
the prevalence of medium to high-severity vulnerabilities
since major updates aren’t being applied promptly.

Cogo et al [4] findings resonate with some of the break-
ages we’ve encountered in our study, as they highlight
that reactive downgrades are often triggered by package
provider defects, unexpected feature changes, and incom-
patibilities. While their work provides valuable insights, our
contribution seeks to augment this understanding by delv-
ing into more nuanced details of these breakages, providing
a more granular categorization by grouping respective NPM
installation phases to the breakages.

7 CONCLUSIONS

Previous investigations have emphasized the significant im-
pact of software dependencies on build failures in various
programming languages. In our study, we analyzed 24
JavaScript projects using NPM to delve into dependency-
related build breakages. Our project selection criteria, in-
cluding popularity, activity, autonomy, and dependency
installation steps, ensured a representative dataset. Using
Git and act, we traced commits affecting package.json
files and locally reproduced builds for analysis. We then
manually classified builds as ”failed” or ”passed” based on
the build outcome, specifically focusing on the dependency-
related failures.

• (RQ1) Essential build steps, especially installation,
and script/build, play a crucial role in the identifi-
cation of dependency-related issues. Approximately
11.7% of project failures are linked to dependency-
related issues, underscoring the urgent need for en-
hanced dependency management practices.

• (RQ2) Automation significantly contributes to the
swift resolution of simpler dependency-related is-
sues, with the fastest fixes taking only 2 minutes.
Longer fix times, stretching up to 5 months, highlight
the intricate and time-intensive nature of manual
interventions in software development.

• (RQ3) Dependency-related failures, constituting 60%
of total issues, emerge as systemic challenges impact-
ing a diverse range of software projects. Peer depen-
dency conflicts are identified as the most prevalent
issue, emphasizing their critical role in build failures.

Future Work. In future work, we aspire to leverage the
insights gained from our study to develop a proactive
tool aimed at enhancing dependency management practices.
Specifically targeting essential build steps, such as instal-
lation and build, to provide developers with automated
assistance in identifying and resolving dependency-related
issues. Our goal is to streamline the software development
process by reducing the occurrence of build failures and
mitigating the impact of peer dependency conflicts
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